Real-Time Estimation of the Urban Air Quality with Mobile Sensor System

Author:

Wang Yun1ORCID,Song Guojie1,Du Lun1,Lu Zhicong1

Affiliation:

1. Peking University, Beijing, P. R. China

Abstract

Recently, real-time air quality estimation has attracted more and more attention from all over the world, which is close to our daily life. With the prevalence of mobile sensors, there is an emerging way to monitor the air quality with mobile sensors on vehicles. Compared with traditional expensive monitor stations, mobile sensors are cheaper and more abundant, but observations from these sensors have unstable spatial and temporal distributions, which results in the existing model could not work very well on this type of data. In this article, taking advantage of air quality data from mobile sensors, we propose an real-time urban air quality estimation method based on the Gaussian Process Regression for air pollution of the unmonitored areas, pivoting on the diffusion effect and the accumulation effect of air pollution. In order to meet the real-time demands, we propose a two-layer ensemble learning framework and a self-adaptivity mechanism to improve computational efficiency and adaptivity. We evaluate our model with real data from mobile sensor system located in Beijing, China. And the experiments show that our proposed model is superior to the state-of-the-art spatial regression methods in both precision and time performances.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Climate modeling with neural advection–diffusion equation;Knowledge and Information Systems;2023-01-31

2. Fine-Grained Air Quality Monitoring with Low-Cost Sensors and IoT: Trends, Challenges, and Future Directions;2022 7th International Conference on Smart and Sustainable Technologies (SpliTech);2022-07-05

3. Spatial-Temporal Air Quality Inference based on Matrix Factorization;ICC 2022 - IEEE International Conference on Communications;2022-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3