Web100

Author:

Mathis Matt1,Heffner John1,Reddy Raghu1

Affiliation:

1. Pittsburgh Supercomputing Center, Pittsburgh, PA

Abstract

TCP has become the dominant protocol for all network data transport because it presents a simple uniform data delivery service which is sufficient for most applications over all types of lower network layers. By its very nature, TCP's adaption and retransmission strategies hide all of the details of the lower layers from the application. For example the only symptom of spurious packet loss (or nearly any other network problem) is longer elapsed time and lower performance.This information hiding is fundamentally important to the growth of the Internet because it decouples the evolution of applications from the evolution of link layers. However it also hides valuable information from researchers, educators, network administrators, and other people who would benefit from insight into the inner workings of TCP and the lower layers.In this paper, we present an architecture and infrastructure that provides for per-connection TCP instrumentation to expose otherwise hidden protocol events. We show examples how the infrastructure can be used in support of research, education and advanced network diagnostic tools.Our work was motivated by the observation that since about 1985 network data rates for typical novice network users have fallen by about three orders of magnitude behind expert users (who have kept up with Moore's Law). We use the term "Wizard Gap" to describe this phenomenon. The Web100 and Net100 projects were formed as one step in closing the Wizard Gap.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Reference44 articles.

1. M. Allman V. Paxson and W. Stevens. Tcp congestion control RFC2581 April 1999.]] M. Allman V. Paxson and W. Stevens. Tcp congestion control RFC2581 April 1999.]]

2. ANINEAR. Advanced networking infrastructure needs in the atmospheric and related sciences (aninars) workshop report. http://www.scd.ucar.edu/nets/projects/completed/1999.complete.projects/nlanr/ final.report.htm.]] ANINEAR. Advanced networking infrastructure needs in the atmospheric and related sciences (aninars) workshop report. http://www.scd.ucar.edu/nets/projects/completed/1999.complete.projects/nlanr/ final.report.htm.]]

3. TCP Vegas

4. CAIDA. Internet tools taxonomy 2003. http://www.caida.org/tools/taxonomy/.]] CAIDA. Internet tools taxonomy 2003. http://www.caida.org/tools/taxonomy/.]]

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the Measurement Lab Open Dataset for Internet Performance Evaluation: The German Internet Landscape;Electronics;2022-01-05

2. Verification of a new metric for data flow continuity and sustainability optimization;International Journal of Communication Systems;2021-06-04

3. Measuring TCP Round-Trip Time in the Data Plane;Proceedings of the Workshop on Secure Programmable Network Infrastructure;2020-08-10

4. Pluginizing QUIC;Proceedings of the ACM Special Interest Group on Data Communication;2019-08-19

5. A Causal Approach to the Study of TCP Performance;ACM Transactions on Intelligent Systems and Technology;2016-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3