Anonymizing Sensor Data on the Edge: A Representation Learning and Transformation Approach

Author:

Hajihassani Omid1,Ardakanian Omid1,Khazaei Hamzeh2

Affiliation:

1. University of Alberta, Alberta, Canada

2. York University, Ontario, Canada

Abstract

The abundance of data collected by sensors in Internet of Things devices and the success of deep neural networks in uncovering hidden patterns in time series data have led to mounting privacy concerns. This is because private and sensitive information can be potentially learned from sensor data by applications that have access to this data. In this article, we aim to examine the tradeoff between utility and privacy loss by learning low-dimensional representations that are useful for data obfuscation. We propose deterministic and probabilistic transformations in the latent space of a variational autoencoder to synthesize time series data such that intrusive inferences are prevented while desired inferences can still be made with sufficient accuracy. In the deterministic case, we use a linear transformation to move the representation of input data in the latent space such that the reconstructed data is likely to have the same public attribute but a different private attribute than the original input data. In the probabilistic case, we apply the linear transformation to the latent representation of input data with some probability. We compare our technique with autoencoder-based anonymization techniques and additionally show that it can anonymize data in real time on resource-constrained edge devices.

Publisher

Association for Computing Machinery (ACM)

Reference46 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Privacy through Diffusion: A White-listing Approach to Sensor Data Anonymization;Proceedings of the 5th Workshop on CPS&IoT Security and Privacy;2023-11-26

2. Specification and Operation of Privacy Models for Data Streams on the Edge;2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3