Sleepers and workaholics

Author:

Barbará Daniel1,Imieliński Tomasz2

Affiliation:

1. Matsushita Information Technology Laboratory, 2 Research Way, 3rd Floor, Princeton, N.J

2. Rutgers University, Department of Computer Science, New Brunswick, N.J

Abstract

In the mobile wireless computing environment of the future a large number of users equipped with low powered palm-top machines will query databases over the wireless communication channels. Palmtop based units will often be disconnected for prolonged periods of time due to the battery power saving measures; palmtops will also frequencly relocate between different cells and connect to different data servers at different times. Caching of frequently accessed data items will be an important technique that will reduce contention on the narrow bandwidth wireless channel. However, cache invalidation strategies will be severely affected by the disconnection and mobility of the clients. The server may no longer know which clients are currently residing under its cell and which of them are currently on. We propose a taxonomy of different cache invalidation strategies and study the impact of client's disconnection times on their performance. We determine that for the units which are often disconnected (sleepers) the best cache invalidation strategy is based on signatures previously used for efficient file comparison. On the other hand, for units which are connected most of the time (workaholics), the best cache invalidation strategy is based on the periodic broadcast of changed data items.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Cooperative Cache Management Scheme Based on Social and Popular Data in Vehicular Named Data Network;Wireless Communications and Mobile Computing;2022-03-22

2. Intelligent Caching in UAV-Aided Networks;IEEE Transactions on Vehicular Technology;2022-01

3. A Recommended Replacement Algorithm for the Scalable Asynchronous Cache Consistency Scheme;IT Convergence and Security 2017;2017-08-31

4. Caching and Data Replication in Mobile Environment;Wireless Networking and Mobile Data Management;2017

5. An adaptive cache invalidation technique for wireless environments;Telecommunication Systems;2015-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3