Implementation of magic-sets in a relational database system

Author:

Mumick Inderpal Singh1,Pirahesh Hamid2

Affiliation:

1. AT&T Bell Laboratories and IBM Almaden Research Center and Stanford University

2. IBM Almaden Research Center

Abstract

We describe the implementation of the magic-sets transformation in the Starburst extensible relational database system. To our knowledge this is the first implementation of the magic-sets transformation in a relational database system. The Starburst implementation has many novel features that make our implementation especially interesting to database practitioners (in addition to database researchers). (1) We use a cost-based heuristic for determining join orders (sips) before applying magic. (2) We push all equality and non-equality predicates using magic, replacing traditional predicate pushdown optimizations. (3) We apply magic to full SQL with duplicates, aggregation, null values, and subqueries. (4) We integrate magic with other relational optimization techniques. (5) The implementation is extensible . Our implementation demonstrates the feasibility of the magic-sets transformation for commercial relational systems, and provides a mechanism to implement magic as an integral part of a new database system, or as an add-on to an existing database system.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference24 articles.

1. F. Bancilhon D. Maier Y. Sagiv and J. Ullman. Magic sets and other strange ways to implement logic programs. In PODS I986. 10.1145/6012.15399 F. Bancilhon D. Maier Y. Sagiv and J. Ullman. Magic sets and other strange ways to implement logic programs. In PODS I986. 10.1145/6012.15399

2. On the power of magic

3. Design and implementation of the glue-nail database system

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sharing Queries with Nonequivalent User-defined Aggregate Functions;ACM Transactions on Database Systems;2024-04-10

2. PLAQUE: Automated Predicate Learning at Query Time;Proceedings of the ACM on Management of Data;2024-03-12

3. Scaling a Declarative Cluster Manager Architecture with Query Optimization Techniques;Proceedings of the VLDB Endowment;2023-06

4. Thorough Data Pruning for Join Query in Database System;IEEE Transactions on Sustainable Computing;2023

5. Optimizing Recursive Queries with Progam Synthesis;Proceedings of the 2022 International Conference on Management of Data;2022-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3