HDRLPIM: A Simulator for H yper D imensional R einforcement L earning based on P rocessing I n M emory

Author:

Rakka Mariam1ORCID,Amer Walaa1ORCID,Chen Hanning1ORCID,Imani Mohsen1ORCID,Kurdahi Fadi1ORCID

Affiliation:

1. UC, Irvine, USA

Abstract

Processing In-Memory (PIM) is a data-centric computation paradigm that performs computations inside the memory, hence eliminating the memory wall problem in traditional computational paradigms used in Von-Neumann architectures. The associative processor, a type of PIM architecture, allows performing parallel and energy-efficient operations on vectors. This architecture is found useful in vector-based applications such as Hyper-Dimensional (HDC) Reinforcement Learning (RL). HDC is rising as a new powerful and lightweight alternative to costly traditional RL models such as Deep Q-Learning. The HDC implementation of Q-Learning relies on encoding the states in a high-dimensional representation where calculating Q-values and finding the maximum one can be done entirely in parallel. In this paper, we propose to implement the main operations of a hyper-dimensional reinforcement learning framework on the associative processor. This acceleration achieves up to \(152.3\times\) and \(6.4\times\) energy and time savings compared to an FPGA implementation. Moreover, HDRLPIM shows that an SRAM-based AP implementation promises up to \(968.2\times\) energy-delay product gains compared to the FPGA implementation.

Publisher

Association for Computing Machinery (ACM)

Reference36 articles.

1. [n. d.]. Cartpole. https://www.gymlibrary.dev/environments/classic_control/cart_pole/. Accessed: 2023-08-07.

2. [n. d.]. Lunar Lander. https://www.gymlibrary.dev/environments/box2d/lunar_lander/. Accessed: 2023-08-07.

3. Hanning Chen, Mariam Issa, Yang Ni, and Mohsen Imani. 2022. DARL: Distributed Reconfigurable Accelerator for Hyperdimensional Reinforcement Learning. In Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design (San Diego, California) (ICCAD ’22). Association for Computing Machinery, New York, NY, USA, Article 84, 9 pages. https://doi.org/10.1145/3508352.3549437

4. Hanning Chen, M Hassan Najafi, Elaheh Sadredini, and Mohsen Imani. 2022. Full stack parallel online hyperdimensional regression on fpga. In 2022 IEEE 40th International Conference on Computer Design (ICCD). IEEE, 517–524.

5. Hanning Chen, Ali Zakeri, Fei Wen, Hamza Errahmouni Barkam, and Mohsen Imani. 2023. HyperGRAF: Hyperdimensional Graph-Based Reasoning Acceleration on FPGA. In 2023 33rd International Conference on Field-Programmable Logic and Applications (FPL). IEEE, 34–41.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3