Affiliation:
1. University of North Texas, Texas
Abstract
Fine-grained localization is extremely important to accurately locate a user indoors. Although innovative solutions have already been proposed, there is no solution that is universally accepted, easily implemented, user centric, and, most importantly, works in the absence of GSM coverage or WiFi availability. The advent of sensor rich smartphones has paved a way to develop a solution that can cater to these requirements.
By employing a smartphone's built-in magnetic field sensor, magnetic signatures were collected inside buildings. These signatures displayed a uniqueness in their patterns due to the presence of different kinds of pillars, doors, elevators, etc., that consist of ferromagnetic materials like steel or iron. We theoretically analyze the cause of this uniqueness and then present an indoor localization solution by classifying signatures based on their patterns. However, to account for user walking speed variations so as to provide an application usable to a variety of users, we follow a dynamic time-warping-based approach that is known to work on similar signals irrespective of their variations in the time axis.
Our approach resulted in localization distances of approximately 2m--6m with accuracies between 80--100% implying that it is sufficient to walk short distances across hallways to be located by the smartphone. The implementation of the application on different smartphones yielded response times of less than five secs, thereby validating the feasibility of our approach and making it a viable solution.
Funder
Division of Computer and Network Systems
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
144 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献