LocateMe

Author:

Subbu Kalyan Pathapati1,Gozick Brandon1,Dantu Ram1

Affiliation:

1. University of North Texas, Texas

Abstract

Fine-grained localization is extremely important to accurately locate a user indoors. Although innovative solutions have already been proposed, there is no solution that is universally accepted, easily implemented, user centric, and, most importantly, works in the absence of GSM coverage or WiFi availability. The advent of sensor rich smartphones has paved a way to develop a solution that can cater to these requirements. By employing a smartphone's built-in magnetic field sensor, magnetic signatures were collected inside buildings. These signatures displayed a uniqueness in their patterns due to the presence of different kinds of pillars, doors, elevators, etc., that consist of ferromagnetic materials like steel or iron. We theoretically analyze the cause of this uniqueness and then present an indoor localization solution by classifying signatures based on their patterns. However, to account for user walking speed variations so as to provide an application usable to a variety of users, we follow a dynamic time-warping-based approach that is known to work on similar signals irrespective of their variations in the time axis. Our approach resulted in localization distances of approximately 2m--6m with accuracies between 80--100% implying that it is sufficient to walk short distances across hallways to be located by the smartphone. The implementation of the application on different smartphones yielded response times of less than five secs, thereby validating the feasibility of our approach and making it a viable solution.

Funder

Division of Computer and Network Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3