Distributed Spatial and Spatio-Temporal Join on Apache Spark

Author:

Whitman Randall T.1,Marsh Bryan G.1,Park Michael B.1,Hoel Erik G.1

Affiliation:

1. Esri, CA, USA

Abstract

Effective processing of extremely large volumes of spatial data has led to many organizations employing distributed processing frameworks. Apache Spark is one such open source framework that is enjoying widespread adoption. Within this data space, it is important to note that most of the observational data (i.e., data collected by sensors, either moving or stationary) has a temporal component or timestamp. To perform advanced analytics and gain insights, the temporal component becomes equally important as the spatial and attribute components. In this article, we detail several variants of a spatial join operation that addresses both spatial, temporal, and attribute-based joins. Our spatial join technique differs from other approaches in that it combines spatial, temporal, and attribute predicates in the join operator. In addition, our spatio-temporal join algorithm and implementation differs from others in that it runs in commercial off-the-shelf (COTS) application. The users of this functionality are assumed to be GIS analysts with little if any knowledge of the implementation details of spatio-temporal joins or distributed processing. They are comfortable using simple tools that do not provide the ability to tweak the configuration of the algorithm or processing environment. The spatio-temporal join algorithm behind the tool must always succeed, regardless of input data parameters (e.g., it can be highly irregularly distributed, contain large numbers of coincident points, it can be extremely large, etc.). These factors combine to place additional requirements on the algorithm that are uncommonly found in the traditional research environment. Our spatio-temporal join algorithm was shipped as part of the GeoAnalytics Server [12], part of the ArcGIS Enterprise platform from version 10.5 onward.

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

Reference48 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3