Affiliation:
1. National Tsing Hua University
2. IBM T.J. Watson Research Center
Abstract
Box intersection checking is a common task used in many large-scale simulations. Traditional methods cannot provide fast box intersection checking with large-scale datasets. This article presents a parallel algorithm to perform Pairwise Box Intersection checking on Graphics processing units (PBIG). The PBIG algorithm consists of three phases: planning, mapping and checking. The planning phase partitions the space into small cells, the sizes of which are determined to optimize performance. The mapping phase maps the boxes into the cells. The checking phase examines the box intersections in the same cell. Several performance optimizations, including load-balancing, output data compression/encoding, and pipelined execution, are presented for the PBIG algorithm. The experimental results show that the PBIG algorithm can process large-scale datasets and outperforms three well-performing algorithms.
Funder
National Science Council Taiwan
National Tsing Hua University
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,Modelling and Simulation
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献