Data Visualization and Responsive Design Principles applied to Industry 4.0: the Mentor Project Case Study

Author:

Ballarini Francesco1,Casadei Matteo2,Borgo Francesco Dal2,Ghini Vittorio3,Mirri Silvia3

Affiliation:

1. University of Bologna, Italy

2. Bucci Industries, Italy

3. Department of Computer Science and Engineering, University of Bologna, Italy

Publisher

ACM

Reference22 articles.

1. Smart devices in the social loops: Criteria and algorithms for the creation of the social links

2. Magdalena Brych . 6 October 2020. Data Visualization best practices in web and mobile Apps. https://espeo.eu/blog/making-data-visualization-a-major-feature-of-your-next-app(6 October 2020 ). Magdalena Brych. 6 October 2020. Data Visualization best practices in web and mobile Apps. https://espeo.eu/blog/making-data-visualization-a-major-feature-of-your-next-app(6 October 2020).

3. Luca Casini , Giovanni Delnevo , Marco Roccetti , Nicolò Zagni , and Giuseppe Cappiello . 2019 . Deep Water: Predicting water meter failures through a human-machine intelligence collaboration . In International conference on human interaction and emerging technologies. Springer, 688–694 . Luca Casini, Giovanni Delnevo, Marco Roccetti, Nicolò Zagni, and Giuseppe Cappiello. 2019. Deep Water: Predicting water meter failures through a human-machine intelligence collaboration. In International conference on human interaction and emerging technologies. Springer, 688–694.

4. Chiara Ceccarini , Giovanni Delnevo , and Catia Prandi . 2020 . Frugar: Exploiting deep learning and crowdsourcing for frugal gardening . In Proceedings of the 1st Workshop on Experiences with the Design and Implementation of Frugal Smart Objects. 7–11 . Chiara Ceccarini, Giovanni Delnevo, and Catia Prandi. 2020. Frugar: Exploiting deep learning and crowdsourcing for frugal gardening. In Proceedings of the 1st Workshop on Experiences with the Design and Implementation of Frugal Smart Objects. 7–11.

5. Designing Interfaces to Display Sensor Data: A Case Study in the Human-Building Interaction Field Targeting a University Community

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3