Learning to Infer Competitive Relationships in Heterogeneous Networks

Author:

Yang Yang1,Tang Jie2,Li Juanzi2

Affiliation:

1. Tsinghua University, Zhejiang University

2. Tsinghua University

Abstract

Detecting and monitoring competitors is fundamental to a company to stay ahead in the global market. Existing studies mainly focus on mining competitive relationships within a single data source, while competing information is usually distributed in multiple networks. How to discover the underlying patterns and utilize the heterogeneous knowledge to avoid biased aspects in this issue is a challenging problem. In this article, we study the problem of mining competitive relationships by learning across heterogeneous networks. We use Twitter and patent records as our data sources and statistically study the patterns behind the competitive relationships. We find that the two networks exhibit different but complementary patterns of competitions. Overall, we find that similar entities tend to be competitors, with a probability of 4 times higher than chance. On the other hand, in social network, we also find a 10 minutes phenomenon: when two entities are mentioned by the same user within 10 minutes, the likelihood of them being competitors is 25 times higher than chance. Based on the discovered patterns, we propose a novel Topical Factor Graph Model. Generally, our model defines a latent topic layer to bridge the Twitter network and patent network. It then employs a semi-supervised learning algorithm to classify the relationships between entities (e.g., companies or products). We test the proposed model on two real data sets and the experimental results validate the effectiveness of our model, with an average of +46% improvement over alternative methods. Besides, we further demonstrate the competitive relationships inferred by our proposed model can be applied in the job-hopping prediction problem by achieving an average of +10.7% improvement.

Funder

Natural Science Foundation of China

Royal Society-Newton Advanced Fellowship Award

MSRA

Chinese National Key Foundation Research

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multisource Data Fusion-based Heterogeneous Graph Attention Network for Competitor Prediction;ACM Transactions on Knowledge Discovery from Data;2023-11-13

2. TechPat: Technical Phrase Extraction for Patent Mining;ACM Transactions on Knowledge Discovery from Data;2023-06-15

3. Competitor identification: A review of use cases, data sources, and algorithms;International Journal of Information Management;2022-08

4. Mining detailed information from the description for App functions comparison;IET Software;2021-09-07

5. Point-of-Interest Recommendation for Users-Businesses with Uncertain Check-ins;IEEE Transactions on Knowledge and Data Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3