A Human-Perceived Softness Measure of Virtual 3D Objects

Author:

Lau Manfred1,Dev Kapil2,Dorsey Julie3,Rushmeier Holly3

Affiliation:

1. Lancaster University, City University of Hong Kong

2. Lancaster University, Lancaster, UK

3. Yale University, New Haven, USA

Abstract

We introduce the problem of computing a human-perceived softness measure for virtual 3D objects. As the virtual objects do not exist in the real world, we do not directly consider their physical properties but instead compute the human-perceived softness of the geometric shapes. In an initial experiment, we find that humans are highly consistent in their responses when given a pair of vertices on a 3D model and asked to select the vertex that they perceive to be more soft. This motivates us to take a crowdsourcing and machine learning framework. We collect crowdsourced data for such pairs of vertices. We then combine a learning-to-rank approach and a multi-layer neural network to learn a non-linear softness measure mapping any vertex to a softness value. For a new 3D shape, we can use the learned measure to compute the relative softness of every vertex on its surface. We demonstrate the robustness of our framework with a variety of 3D shapes and compare our non-linear learning approach with a linear method from previous work. Finally, we demonstrate the accuracy of our learned measure with user studies comparing our measure with the human-perceived softness of both virtual and real objects, and we show the usefulness of our measure with some applications.

Funder

Microsoft Research

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science

Reference51 articles.

1. Fabricating articulated characters from skinned meshes

2. Learning visual similarity for product design with convolutional neural networks

3. Design and fabrication of materials with desired deformation behavior

4. Angel X. Chang Thomas A. Funkhouser Leonidas J. Guibas Pat Hanrahan Qi-Xing Huang Zimo Li Silvio Savarese Manolis Savva Shuran Song Hao Su Jianxiong Xiao Li Yi and Fisher Yu. 2015. ShapeNet: An information-rich 3D model repository. CoRR (2015). arXiv.org. Angel X. Chang Thomas A. Funkhouser Leonidas J. Guibas Pat Hanrahan Qi-Xing Huang Zimo Li Silvio Savarese Manolis Savva Shuran Song Hao Su Jianxiong Xiao Li Yi and Fisher Yu. 2015. ShapeNet: An information-rich 3D model repository. CoRR (2015). arXiv.org.

5. Efficient algorithms for ranking with SVMs

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3