Affiliation:
1. College of Computer Science and Technology, Zhejiang University, Hangzhou, China
2. State Key Laboratory of Blockchain and Data Security, College of Computer Science and Technology, Zhejiang University, Hangzhou, China
Abstract
Event prediction is a vital and challenging task in temporal knowledge graphs (TKGs), which have played crucial roles in various applications. Recently, many graph neural networks based approaches are proposed to model the graph structure information in TKGs. However, these approaches only construct graphs based on quadruplets and model the pairwise correlation between entities, which fail to capture the high-order correlations among entities. To this end, we propose DHyper, a recurrent Dual Hypergraph neural network for event prediction in TKGs, which simultaneously models the influences of the high-order correlations among both entities and relations. Specifically, a dual hypergraph learning module is proposed to discover the high-order correlations among entities and among relations in a parameterized way. A dual hypergraph message passing network is introduced to perform the information aggregation and representation fusion on the entity hypergraph and the relation hypergraph. Extensive experiments on six real-world datasets demonstrate that DHyper achieves the state-of-the-art performances, outperforming the best baseline by an average of 13.09%, 4.26%, 17.60%, and 18.03% in MRR, Hits@1, Hits@3, and Hits@10, respectively.
Funder
National Key Research and Development Program of China
Donghai Laboratory
Publisher
Association for Computing Machinery (ACM)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献