Affiliation:
1. Tsinghua University, Beijing, China
2. National University of Singapore, Computing Drive, Singapore
Abstract
Social media websites have become important information sharing platforms. The rapid development of social media platforms has led to increasingly large-scale social media data, which has shown remarkable societal and marketing values. There are needs to extract important events in live social media streams. However, microblogs event classification is challenging due to two facts, i.e., the short/conversational nature and the incompatible meanings between the text and the corresponding image in social posts, and the rapidly evolving contents. In this article, we propose to conduct event classification via deep learning and social tracking. First, we introduce a Multi-modal Multi-instance Deep Network (M
2
DN) for microblogs classification, which is able to handle the weakly labeled microblogs data oriented from the incompatible meanings inside microblogs. Besides predicting each microblogs as predefined events, we propose to employ social tracking to extract social-related auxiliary information to enrich the testing samples. We extract a set of candidate-relevant microblogs in a short time window by using social connections, such as related users and geographical locations. All these selected microblogs and the testing data are formulated in a Markov Random Field model. The inference on the Markov Random Field is conducted to update the classification results of the testing microblogs. This method is evaluated on the Brand-Social-Net dataset for classification of 20 events. Experimental results and comparison with the state of the arts show that the proposed method can achieve better performance for the event classification task.
Funder
National Science and Technology Major Project
NSFC
The National Key Technology R8D Program
MIIT IT funds (Research and application of TCN key technologies) of China
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献