Data-driven Computational Homogenization Using Neural Networks

Author:

Drosopoulos Georgios A.1,Stavroulakis Georgios E.2

Affiliation:

1. Discipline of Civil Engineering, Structural Engineering and Computational Mechanics Group, University of Kwazulu-Natal, Durban, South Africa

2. Computational Mechanics and Optimization Laboratory, School of Production Engineering and Management, Technical University of Crete, Chania, Greece

Abstract

Fusion of data mining and computational mechanics is a modern approach for the exploitation of available data within rigorous modeling. First steps in this direction have been focused on the usage of neural networks and other soft computing tools as metamodeling tools. This framework seems suitable for numerical homogenization techniques realized within the so-called FE 2 environment, where the lower-level analysis of a detailed representative volume element is replaced by a prediction based on a previously prepared database. Numerically prepared data are used here, although the method can be used with experimental data as well. In this case, the need for a constitutive description of the fine scale is bypassed. Extraction of material properties from the database, required by the upper-level finite element analysis, is based on backpropagation artificial neural networks. The method is applicable to monuments and masonry structural systems. We investigate this approach here for the analysis of masonry structures with elastoplastic behavior. Results indicate a satisfactory comparison with published research.

Funder

Greek Diaspora Fellowship

Stavros S. Niarchos Foundation and Fulbright Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Information Systems,Conservation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3