Using destination-set prediction to improve the latency/bandwidth tradeoff in shared-memory multiprocessors

Author:

Martin Milo M. K.1,Harper Pacia J.1,Sorin Daniel J.2,Hill Mark D.1,Wood David A.1

Affiliation:

1. University of Wisconsin-Madison

2. Duke University

Abstract

Destination-set prediction can improve the latency/bandwidth tradeoff in shared-memory multiprocessors. The destination set is the collection of processors that receive a particular coherence request. Snooping protocols send requests to the maximal destination set (i.e., all processors), reducing latency for cache-to-cache misses at the expense of increased traffic. Directory protocols send requests to the minimal destination set, reducing bandwidth at the expense of an indirection through the directory for cache-to-cache misses. Recently proposed hybrid protocols trade-off latency and bandwidth by directly sending requests to a predicted destination set.This paper explores the destination-set predictor design space, focusing on a collection of important commercial workloads. First, we analyze the sharing behavior of these workloads. Second, we propose predictors that exploit the observed sharing behavior to target different points in the latency/bandwidth tradeoff. Third, we illustrate the effectiveness of destination-set predictors in the context of a multicast snooping protocol. For example, one of our predictors obtains almost 90% of the performance of snooping while using only 15% more bandwidth than a directory protocol (and less than half the bandwidth of snooping).

Publisher

Association for Computing Machinery (ACM)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic sharing classification and timely push for cache-coherent systems;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2015-11-15

2. Switch-based packing technique to reduce traffic and latency in token coherence;Journal of Parallel and Distributed Computing;2012-03

3. Exploit Temporal Locality of Shared Data in SRC Enabled CMP;Lecture Notes in Computer Science;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3