Affiliation:
1. University of Oxford, Oxford, UK
2. LogicBlox and UC Santa Cruz, CA, USA
Abstract
Desirable properties of a logic include decidability, and a model theory that inherits properties of first-order logic, such as interpolation and preservation theorems. It is known that the Guarded Fragment (GF) of first-order logic is decidable and satisfies some preservation properties from first-order model theory; however, it fails to have Craig interpolation. The Guarded Negation Fragment (GNF), a recently defined extension, is known to be decidable and to have Craig interpolation. Here we give the first results on effective interpolation for extensions of GF. We provide an interpolation procedure for GNF whose complexity matches the doubly exponential upper bound for satisfiability of GNF. We show that the same construction gives not only Craig interpolation, but Lyndon interpolation and relativized interpolation, which can be used to provide effective proofs of some preservation theorems. We provide upper bounds on the size of GNF interpolants for both GNF and GF input, and complement this with matching lower bounds.
Funder
Engineering and Physical Sciences Research Council
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献