Capacity Upper Bounds for Deletion-type Channels

Author:

Cheraghchi Mahdi1ORCID

Affiliation:

1. Imperial College London, London, United Kingdom

Abstract

We develop a systematic approach, based on convex programming and real analysis for obtaining upper bounds on the capacity of the binary deletion channel and, more generally, channels with i.i.d. insertions and deletions. Other than the classical deletion channel, we give special attention to the Poisson-repeat channel introduced by Mitzenmacher and Drinea (IEEE Transactions on Information Theory, 2006). Our framework can be applied to obtain capacity upper bounds for any repetition distribution (the deletion and Poisson-repeat channels corresponding to the special cases of Bernoulli and Poisson distributions). Our techniques essentially reduce the task of proving capacity upper bounds to maximizing a univariate, real-valued, and often concave function over a bounded interval. The corresponding univariate function is carefully designed according to the underlying distribution of repetitions, and the choices vary depending on the desired strength of the upper bounds as well as the desired simplicity of the function (e.g., being only efficiently computable versus having an explicit closed-form expression in terms of elementary, or common special, functions). Among our results, we show the following: (1) The capacity of the binary deletion channel with deletion probability d is at most (1 − d ) φ for d ≥ 1/2 and, assuming that the capacity function is convex, is at most 1 − d log(4/φ) for d < 1/2, where φ = (1 + √5)/2 is the golden ratio. This is the first nontrivial capacity upper bound for any value of d outside the limiting case d → 0 that is fully explicit and proved without computer assistance. (2) We derive the first set of capacity upper bounds for the Poisson-repeat channel. Our results uncover further striking connections between this channel and the deletion channel and suggest, somewhat counter-intuitively, that the Poisson-repeat channel is actually analytically simpler than the deletion channel and may be of key importance to a complete understanding of the deletion channel. (3) We derive several novel upper bounds on the capacity of the deletion channel. All upper bounds are maximums of efficiently computable, and concave, univariate real functions over a bounded domain. In turn, we upper bound these functions in terms of explicit elementary and standard special functions, whose maximums can be found even more efficiently (and sometimes analytically, for example, for d = 1/2).

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference42 articles.

1. Capacity per unit cost of a discrete memoryless channel

2. M. Abramowitz and I. A. Stegun. 1974. Handbook of Mathematical Functions With Formulas Graphs and Mathematical Tables. Dover Publications Inc. New York NY. M. Abramowitz and I. A. Stegun. 1974. Handbook of Mathematical Functions With Formulas Graphs and Mathematical Tables. Dover Publications Inc. New York NY.

3. Mutual Information, Relative Entropy, and Estimation in the Poisson Channel

4. A DNA-Based Archival Storage System

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mutual Information Upper Bounds for Uniform Inputs Through the Deletion Channel;IEEE Transactions on Information Theory;2024-07

2. Survey for a Decade of Coding for DNA Storage;IEEE Transactions on Molecular, Biological, and Multi-Scale Communications;2024-06

3. Capacity Bounds for the Poisson-Repeat Channel;2023 IEEE International Symposium on Information Theory (ISIT);2023-06-25

4. On the Size of Balls and Anticodes of Small Diameter Under the Fixed-Length Levenshtein Metric;IEEE Transactions on Information Theory;2023-04

5. On the Symmetries of the Deletion Channel;2022 58th Annual Allerton Conference on Communication, Control, and Computing (Allerton);2022-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3