Approximate Learning and Fault-Tolerant Mapping for Energy-Efficient Neuromorphic Systems

Author:

Gebregirogis Anteneh1,Tahoori Mehdi1

Affiliation:

1. Chair of Dependable Nano Computing, Karlsruhe Institute of Technology, Germany

Abstract

Brain-inspired deep neural networks such as Convolutional Neural Network (CNN) have shown great potential in solving difficult cognitive problems such as object recognition and classification. However, such architectures have high computational energy demand and sensitivity to variation effects, making them inapplicable for energy-constrained embedded learning platforms. To address this issue, we propose a learning and mapping approach that utilizes approximate computing during early design phases for a layer-wise pruning and fault tolerant weight mapping scheme of reliable and energy-efficient CNNs. In the proposed approach, approximate CNN is prepared first by layer-wise pruning of approximable neurons, which have high error tolerance margins using a two-level approximate learning methodology. Then, the pruned network is retrained to improve its accuracy by fine-tuning the weight values. Finally, a fault-tolerant layer-wise neural weight mapping scheme is adopted to aggressively reduce memory operating voltage when loading the weights of error resilient layers for energy-efficiency. Thus, the combination of approximate learning and fault tolerance aware memory operating voltage downscaling techniques enable us to implement robust and energy-efficient approximate inference engine for CNN applications. Simulation results show that the proposed fault tolerant and approximate learning approach can improve the energy-efficiency of CNN inference engines by more than 50% with less than 5% reduction in classification accuracy. Additionally, more than 26% energy-saving is achieved by using the proposed layer-wise mapping-based cache memory operating voltage down-scaling.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference59 articles.

1. Ternary neural networks for resource-efficient AI applications

2. Noise benefits in backpropagation and deep bidirectional pre-training

3. Pedro Ballester and Ricardo Matsumura de Araújo. 2016. On the performance of GoogLeNet and AlexNet applied to sketches. In AAAI. 1124--1128. Pedro Ballester and Ricardo Matsumura de Araújo. 2016. On the performance of GoogLeNet and AlexNet applied to sketches. In AAAI. 1124--1128.

4. Radiation-induced soft errors in advanced semiconductor technologies

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3