Data mining for hypertext

Author:

Chakrabarti Soumen1

Affiliation:

1. Indian Institute of Technology Bombay

Abstract

With over 800 million pages covering most areas of human endeavor, the World-wide Web is a fertile ground for data mining research to make a difference to the effectiveness of information search. Today, Web surfers access the Web through two dominant interfaces: clicking on hyperlinks and searching via keyword queries. This process is often tentative and unsatisfactory. Better support is needed for expressing one's information need and dealing with a search result in more structured ways than available now. Data mining and machine learning have significant roles to play towards this end.In this paper we will survey recent advances in learning and mining problems related to hypertext in general and the Web in particular. We will review the continuum of supervised to semi-supervised to unsupervised learning problems, highlight the specific challenges which distinguish data mining in the hypertext domain from data mining in the context of data warehouses, and summarize the key areas of recent and ongoing research.

Publisher

Association for Computing Machinery (ACM)

Reference71 articles.

1. Automatic subspace clustering of high dimensional data for data mining applications

2. Automatic hypertext link typing

3. D. J. Arnold L. Balkan R. L. Humphreys S. Meijer and L. Sadler. Machine translation: An introductory guide 1995. Online at http://clwww.essex.ac.uk/~doug/book/book.html. D. J. Arnold L. Balkan R. L. Humphreys S. Meijer and L. Sadler. Machine translation: An introductory guide 1995. Online at http://clwww.essex.ac.uk/~doug/book/book.html.

4. Babelfish Language Translation Service. http://www.altavista.com 1998. Babelfish Language Translation Service. http://www.altavista.com 1998.

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Way-Based Cache Partitioning;2023 IEEE Silchar Subsection Conference (SILCON);2023-11-03

2. A Mesh Mapping-Based Cooperative Inversion Strategy for Airborne Transient Electromagnetic and Magnetic Methods;Remote Sensing;2022-12-26

3. Web content mining analysis of e-scooter crash causes and implications in Germany;Accident Analysis & Prevention;2022-12

4. Quantum algorithm for MMNG-based DBSCAN;Scientific Reports;2021-07-30

5. SAWEG: A new algorithm for network clustering;International Journal of Modern Physics C;2020-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3