The UAN: a user-oriented representation for direct manipulation interface designs

Author:

Hartson H. Rex1,Siochi Antonio C.1,Hix D.1

Affiliation:

1. Virginia Polytechnic Institute and State Univ., Blacksburg

Abstract

Many existing interface representation techniques, especially those associated with UIMS, are constructional and focused on interface implementation, and therefore do not adequately support a user-centered focus. But it is in the behavioral domain of the user that interface designers and evaluators do their work . We are seeking to complement constructional methods by providing a tool-supported technique capable of specifying the behavioral aspects of an interactive system–the tasks and the actions a user performs to accomplish those tasks. In particular, this paper is a practical introduction to use of the User Action Notation (UAN), a task- and user-oriented notation for behavioral representation of asynchronous, direct manipulation interface designs. Interfaces are specified in UAN as a quasihierarchy of asynchronous tasks. At the lower levels, user actions are associated with feedback and system state changes. The notation makes use of visually onomatopoeic symbols and is simple enough to read with little instruction. UAN is being used by growing numbers of interface developers and researchers. In addition to its design role, current research is investigating how UAN can support production and maintenance of code and documentation.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Providing Economic Security of Enterprises Through Sindinic as Science of Danger;Vestnik of the Plekhanov Russian University of Economics;2024-01-26

2. New verification and validation tools for Industry 4.0 software;Designing Smart Manufacturing Systems;2023

3. Modelling user reactions expressed through graphical widgets in intelligent interactive systems;Behaviour & Information Technology;2021-06-01

4. How to Formally Model Human in Collaborative Robotics;Electronic Proceedings in Theoretical Computer Science;2020-12-03

5. Safety bounds in human robot interaction: A survey;Safety Science;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3