Reconfigurable Embedded Devices Using Reinforcement Learning to Develop Action Policies

Author:

Burger Alwyn1ORCID,Schiele Gregor1ORCID,King David W.2ORCID

Affiliation:

1. University of Duisburg-Essen, Duisburg, Germany

2. Air Force Institute of Technology, Dayton, Ohio, USA

Abstract

The size of sensor networks supporting smart cities is ever increasing. Sensor network resiliency becomes vital for critical networks such as emergency response and waste water treatment. One approach is to engineer “self-aware” sensors that can proactively change their component composition in response to changes in work load when critical devices fail. By extension, these devices could anticipate their own termination, such as battery depletion, and offload current tasks onto connected devices. These neighboring devices can then reconfigure themselves to process these tasks, thus avoiding catastrophic network failure. In this article, we compare and contrast two types of self-aware sensors. One set uses Q-learning to develop a policy that guides device reaction to various environmental stimuli, whereas the others use a set of shallow neural networks to select an appropriate reaction. The novelty lies in the use of field programmable gate arrays embedded on the sensors that take into account internal system state, configuration, and learned state-action pairs, which guide device decisions to meet system demands. Experiments show that even relatively simple reward functions develop both Q-learning policies and shallow neural networks that yield positive device behaviors in dynamic environments.

Funder

Federal Ministry of Education and Research of Germany

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Keynote: The Elastic AI Ecosystem — Towards A Holistic Pervasive System for Adaptive Artificial Intelligence;2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops);2023-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3