Affiliation:
1. University of Toledo, Toledo, OH, USA
Abstract
Physical Unclonable Functions (PUFs) exploit the manufacturing process variations inherent in silicon-based chips to generate unique secret keys. Although PUFs are supposed to be unclonable or unbreakable, researchers have found that they are vulnerable to machine learning (ML) attacks. In this article, we analyze the vulnerability of different FPGA-based Ring Oscillator PUFs (ROPUFs) to machine learning attacks. The challenge-response pairs (CRPs) data obtained from different ROPUFs is trained using different machine learning algorithms. From the study, it is found that the Artificial Neural Network (ANN) models can be used to train the ROPUFs with a training accuracy of 99.9% and a prediction accuracy of 62% when 5,000 CRPs are used for a
challenge-response ROPUF. In this article, we assume a realistic situation where a small set of the CRP dataset (approximately 15% maximum) is unscrupulously obtained by the hacker. A prediction accuracy of 62% makes the PUF vulnerable to machine learning attacks. Therefore, a secondary goal of this article is the design of a ROPUF capable of thwarting machine learning modeling attacks. The modified XOR-inverter ROPUF drastically reduces the prediction accuracy from 62% to 13.1%, thus making it increasingly difficult for hackers to attack the ROPUF.
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Software
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献