Reliable and Secure Design-Space-Exploration for Cyber-Physical Systems

Author:

Ghosh Saurav Kumar1ORCID,R C Jaffer Sheriff1,Jain Vibhor1,Dey Soumyajit1

Affiliation:

1. Indian Institute of Technology Kharagpur, WB, India

Abstract

Given the widespread deployment of cyber-physical systems and their safety-critical nature, reliability and security guarantees offered by such systems are of paramount importance. While the security of such systems against sensor attacks have garnered significant attention from researchers in recent times, improving the reliability of a control software implementation against transient environmental disturbances need to be investigated further. Scalable formal methods for verification of actual control performance guarantee offered by software implementations of control laws in the face of sensory faults have been explored in recent work [20]. However, the formal verification of the improvement of system reliability by incorporating sensor fault mitigation techniques like Kalman filtering [29] and sensor fusion [18, 52] remains to be explored. Moreover, system designers face complex tradeoff choices for deciding upon the usage of fault and attack mitigation techniques and scheduling them on available system resources as they incur extra computation load. In the present work, our contributions are threefold. We formally analyze the actual performance guarantee of control software implementations enabled with additional fault mitigation techniques. We consider task-level models of such implementations enabled with security and fault tolerance primitives and construct a timed automata-based model which checks for schedulability on heterogeneous multi-core platforms. We leverage these methodologies in the context of a novel Design-Space-Exploration (DSE) framework that considers target reliability and security guarantees for a control system and computes schedulable design options while considering well-known platform-level security improvement and fault mitigation techniques. We validate our contributions over several case studies from the automotive domain.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Embedded Autonomous Driving Positioning System Fusing LiDAR and Inertial Sensors;ACM Transactions on Embedded Computing Systems;2024-01-19

2. A Failure Model Library for Simulation-Based Validation of Functional Safety;Lecture Notes in Computer Science;2024

3. CANASTA: Controller Area Network Authentication Schedulability Timing Analysis;IEEE Transactions on Vehicular Technology;2023-08

4. Embedded Systems Design Space Exploration Under Security Constraints;International Journal of Technology Diffusion;2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3