Java object header elimination for reduced memory consumption in 64-bit virtual machines

Author:

Venstermans Kris1,Eeckhout Lieven1,De Bosschere Koen1

Affiliation:

1. Ghent University, Gent, Belgium

Abstract

Memory performance is an important design issue for contemporary computer systems given the huge processor/memory speed gap. This paper proposes a space-efficient Java object model for reducing the memory consumption of 64-bit Java virtual machines. We completely eliminate the object header through typed virtual addressing (TVA) or implicit typing. TVA encodes the object type in the object's virtual address by allocating all objects of a given type in a contiguous memory segment. This allows for removing the type information as well as the status field from the object header. Whenever type and status information is needed, masking is applied to the object's virtual address for obtaining an offset into type and status information structures. Unlike previous work on implicit typing, we apply TVA to a selected number of frequently allocated object types, hence, the name selective TVA (STVA); this limits the amount of memory fragmentation. In addition to applying STVA, we also compress the type information block (TIB) pointers for all objects that do not fall under TVA. We implement the space-efficient Java object model in the 64-bit version of the Jikes RVM on an AIX IBM platform and compare its performance against the traditionally used Java object model using a multitude of Java benchmarks. We conclude that the space-efficient Java object model reduces memory consumption by on average 15% (and up to 45% for some benchmarks). About one-half the reduction comes from TIB pointer compression; the other one-half comes from STVA. In terms of performance, the space-efficient object model generally does not affect performance; however, for some benchmarks we observe statistically significant performance speedups, up to 20%.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference19 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Judging a type by its pointer: optimizing GPU virtual functions;Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems;2021-04-17

2. A hardware-oriented object model for Java in an embedded processor;Microprocessors and Microsystems;2018-11

3. Type Information Elimination from Objects on Architectures with Tagged Pointers Support;IEEE Transactions on Computers;2018-01-01

4. Cross-ISA debugging in meta-circular VMs;Proceedings of the 9th ACM SIGPLAN International Workshop on Virtual Machines and Intermediate Languages;2017-10-24

5. An efficient representation for lazy constructors using 64-bit pointers;Proceedings of the 3rd ACM SIGPLAN workshop on Functional high-performance computing - FHPC '14;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3