Linked Vocabulary Recommendation Tools for Internet of Things

Author:

Kolbe Niklas1,Kubler Sylvain2,Robert Jérémy1,Le Traon Yves1,Zaslavsky Arkady3

Affiliation:

1. University of Luxembourg, Luxembourg, Luxembourg

2. Université de Lorraine, France and CRAN, Vandoeuvre-lès-Nancy, France

3. CSIRO, Australia and Deakin University, Burwood, Australia

Abstract

The Semantic Web emerged with the vision of eased integration of heterogeneous, distributed data on the Web. The approach fundamentally relies on the linkage between and reuse of previously published vocabularies to facilitate semantic interoperability. In recent years, the Semantic Web has been perceived as a potential enabling technology to overcome interoperability issues in the Internet of Things (IoT), especially for service discovery and composition. Despite the importance of making vocabulary terms discoverable and selecting the most suitable ones in forthcoming IoT applications, no state-of-the-art survey of tools achieving such recommendation tasks exists to date. This survey covers this gap by specifying an extensive evaluation framework and assessing linked vocabulary recommendation tools. Furthermore, we discuss challenges and opportunities of vocabulary recommendation and related tools in the context of emerging IoT ecosystems. Overall, 40 recommendation tools for linked vocabularies were evaluated, both empirically and experimentally. Some of the key findings include that (i) many tools neglect to thoroughly address both the curation of a vocabulary collection and effective selection mechanisms, (ii) modern information retrieval techniques are underrepresented, and (iii) the reviewed tools that emerged from Semantic Web use cases are not yet sufficiently extended to fit today’s IoT projects.

Funder

European Union’s Horizon 2020 Research and Innovation programme

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3