Piranha

Author:

Barroso Luiz André1,Gharachorloo Kourosh1,McNamara Robert2,Nowatzyk Andreas1,Qadeer Shaz2,Sano Barton1,Smith Scott3,Stets Robert1,Verghese Ben1

Affiliation:

1. Western Research Laboratory, Compaq Computer Corporation, Palo Alto, CA

2. Systems Research Center, Compaq Computer Corporation, Palo Alto, CA

3. NonStop Hardware Development, Compaq Computer Corporation, Austin, TX

Abstract

The microprocessor industry is currently struggling with higher development costs and longer design times that arise from exceedingly complex processors that are pushing the limits of instruction-level parallelism. Meanwhile, such designs are especially ill suited for important commercial applications, such as on-line transaction processing (OLTP), which suffer from large memory stall times and exhibit little instruction-level parallelism. Given that commercial applications constitute by far the most important market for high-performance servers, the above trends emphasize the need to consider alternative processor designs that specifically target such workloads. The abundance of explicit thread-level parallelism in commercial workloads, along with advances in semiconductor integration density, identify chip multiprocessing (CMP) as potentially the most promising approach for designing processors targeted at commercial servers. This paper describes the Piranha system, a research prototype being developed at Compaq that aggressively exploits chip multi-processing by integrating eight simple Alpha processor cores along with a two-level cache hierarchy onto a single chip. Piranha also integrates further on-chip functionality to allow for scalable multiprocessor configurations to be built in a glueless and modular fashion. The use of simple processor cores combined with an industry-standard ASIC design methodology allow us to complete our prototype within a short time-frame, with a team size and investment that are an order of magnitude smaller than that of a commercial microprocessor. Our detailed simulation results show that while each Piranha processor core is substantially slower than an aggressive next-generation processor, the integration of eight cores onto a single chip allows Piranha to outperform next-generation processors by up to 2.9 times (on a per chip basis) on important workloads such as OLTP. This performance advantage can approach a factor of five by using full-custom instead of ASIC logic. In addition to exploiting chip multiprocessing, the Piranha prototype incorporates several other unique design choices including a shared second-level cache with no inclusion, a highly optimized cache coherence protocol, and a novel I/O architecture.

Publisher

Association for Computing Machinery (ACM)

Reference48 articles.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PODI: A Private Object Detection Inference framework for autonomous vehicles;Knowledge-Based Systems;2024-10

2. Model Checking TileLink Cache Coherence Protocols By Murphi;2023 IEEE 41st International Conference on Computer Design (ICCD);2023-11-06

3. Scalable short-entry dual-grain coherence directories with flexible region granularity;The Journal of Supercomputing;2023-08-23

4. Galectin‐1–RNA interaction map reveals potential regulatory roles in angiogenesis;FEBS Letters;2021-02-08

5. Storage combinators;Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software;2019-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3