A fully associative software-managed cache design

Author:

Hallnor Erik G.1,Reinhardt Steven K.1

Affiliation:

1. Advanced Computer Architecture Laboratory, Dept. of Electrical Engineering and Computer Science, The University of Michigan, 1301 Beal Ave., Ann Arbor, MI

Abstract

As DRAM access latencies approach a thousand instruction-execution times and on-chip caches grow to multiple megabytes, it is not clear that conventional cache structures continue to be appropriate. Two key features—full associativity and software management—have been used successfully in the virtual-memory domain to cope with disk access latencies. Future systems will need to employ similar techniques to deal with DRAM latencies. This paper presents a practical, fully associative, software-managed secondary cache system that provides performance competitive with or superior to traditional caches without OS or application involvement. We see this structure as the first step toward OS- and application-aware management of large on-chip caches. This paper has two primary contributions: a practical design for a fully associative memory structure, the indirect index cache (IIC), and a novel replacement algorithm, generational replacement , that is specifically designed to work with the IIC. We analyze the behavior of an IIC with generational replacement as a drop-in, transparent substitute for a conventional secondary cache. We achieve miss rate reductions from 8% to 85% relative to a 4-way associative LRU organization, matching or beating a (practically infeasible) fully associative true LRU cache. Incorporating these miss rates into a rudimentary timing model indicates that the IIC/generational replacement cache could be competitive with a conventional cache at today's DRAM latencies, and will outperform a conventional cache as these CPU-relative latencies grow.

Publisher

Association for Computing Machinery (ACM)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid memory architecture supporting fine-grained data migration;Frontiers of Computer Science;2024-01-22

2. A Prefetch-Adaptive Intelligent Cache Replacement Policy Based on Machine Learning;Journal of Computer Science and Technology;2023-03-30

3. A Hybrid Memory Architecture Supporting Fine-Grained Data Migration;SSRN Electronic Journal;2022

4. A Primer on Compression in the Memory Hierarchy;Synthesis Lectures on Computer Architecture;2015-12-18

5. DaCache;Proceedings of the 29th ACM on International Conference on Supercomputing;2015-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3