The Effectiveness of Test Coverage Criteria for Relational Database Schema Integrity Constraints

Author:

Mcminn Phil1,Wright Chris J.1,Kapfhammer Gregory M.2

Affiliation:

1. University of Sheffield, Sheffield, UK

2. Allegheny College, Meadville, PA

Abstract

Despite industry advice to the contrary, there has been little work that has sought to test that a relational database's schema has correctly specified integrity constraints. These critically important constraints ensure the coherence of data in a database, defending it from manipulations that could violate requirements such as “usernames must be unique” or “the host name cannot be missing or unknown.” This article is the first to propose coverage criteria, derived from logic coverage criteria, that establish different levels of testing for the formulation of integrity constraints in a database schema. These range from simple criteria that mandate the testing of successful and unsuccessful INSERT statements into tables to more advanced criteria that test the formulation of complex integrity constraints such as multi-column PRIMARY KEYs and arbitrary CHECK constraints. Due to different vendor interpretations of the structured query language (SQL) specification with regard to how integrity constraints should actually function in practice, our criteria crucially account for the underlying semantics of the database management system (DBMS). After formally defining these coverage criteria and relating them in a subsumption hierarchy, we present two approaches for automatically generating tests that satisfy the criteria. We then describe the results of an empirical study that uses mutation analysis to investigate the fault-finding capability of data generated when our coverage criteria are applied to a wide variety of relational schemas hosted by three well-known and representative DBMSs—HyperSQL, PostgreSQL, and SQLite. In addition to revealing the complementary fault-finding capabilities of the presented criteria, the results show that mutation scores range from as low as just 12% of mutants being killed with the simplest of criteria to 96% with the most advanced.

Funder

EPSRC

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A semantic axiomatic design for integrity in IoT;Transactions on Emerging Telecommunications Technologies;2024-08-27

2. Generating valid test data through data cloning;Future Generation Computer Systems;2023-07

3. Integrity Constraint Verification of Structured Query Language by Abstract Interpretation;2022 OITS International Conference on Information Technology (OCIT);2022-12

4. Griffin : Grammar-Free DBMS Fuzzing;Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering;2022-10-10

5. SAND: a static analysis approach for detecting SQL antipatterns;Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis;2021-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3