GLADE

Author:

Rusu Florin1,Dobra Alin2

Affiliation:

1. University of California, Merced, Merced, CA

2. University of Florida, Gainesville, FL

Abstract

In this paper we introduce GLADE, a scalable distributed framework for large scale data analytics. GLADE consists of a simple user-interface to define Generalized Linear Aggregates (GLA), the fundamental abstraction at the core of GLADE, and a distributed runtime environment that executes GLAs by using parallelism extensively. GLAs are derived from User-Defined Aggregates (UDA), a relational database extension that allows the user to add specialized aggregates to be executed inside the query processor. GLAs extend the UDA interface with methods to Serialize/Deserialize the state of the aggregate required for distributed computation. As a significant departure from UDAs which can be invoked only through SQL, GLAs give the user direct access to the state of the aggregate, thus allowing for the computation of significantly more complex aggregate functions. GLADE runtime is an execution engine optimized for the GLA computation. The runtime takes the user-defined GLA code, compiles it inside the engine, and executes it right near the data by taking advantage of parallelism both inside a single machine as well as across a cluster of computers. This results in maximum possible execution time performance (all our experimental tasks are I/O-bound) and linear scaleup.

Publisher

Association for Computing Machinery (ACM)

Reference17 articles.

1. Hadoop. http://hadoop.apache.org/. {Online; accessed July 2011}. Hadoop. http://hadoop.apache.org/. {Online; accessed July 2011}.

2. Microsoft SQL Server. http://msdn.microsoft.com/enus/library/ms131057.aspx. {Online; accessed July 2011}. Microsoft SQL Server. http://msdn.microsoft.com/enus/library/ms131057.aspx. {Online; accessed July 2011}.

3. The DataPath system

4. MAD skills

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3