Affiliation:
1. Cornell University, Department of Computer Science, Ithaca, New York
Abstract
A study of the problem of recognizing the set of primes by automata is presented. A simple algebraic condition is derived which shows that neither the set of primes nor any infinite subset of the set of primes can be accepted by a pushdown or finite automaton.
In view of this result an interesting open problem is to determine the “weakest” automaton which can accept the set of primes. It is shown that the linearly bounded automaton can accept the set of primes, and it is conjectured that no automaton whose memory grows less rapidly can recognize the set of primes. One of the results shows that if this conjecture is true, it cannot be proved by the use of arguments about the distribution of primes, as described by the Prime Number Theorem. Some relations are established between two classical conjectures in number theory and the minimal rate of memory growth of automata which can recognize the set of primes.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献