Correlation-Aware Flow Consolidation for Load Balancing and Beyond

Author:

Ketabi Shiva1,Buckley Matthew1,Pazhooheshy Parsa1,Farahvash Faraz2,Ganjali Yashar1

Affiliation:

1. University of Toronto

2. Sharif University of Technology

Abstract

Existing load balancing solutions rely on direct or indirect measurement of rates (or congestion) averaged over short periods of time. Sudden fluctuations in flow rates can lead to significant undershooting/ overshooting of target link loads. In this paper, we make the case for taking variations and correlations of flows into account in load balancing. We propose correlation-aware flow consolidation, i.e. aggregating inversely correlated (or uncorrelated) flows into superflows and using them as building blocks for load balancing. Superflows are smoother than individual flows, and thus are easier to estimate with a higher confidence, and can reduce overshooting/ undershooting of link capacities. We present heuristic methods combined with predictive models to consolidate flows and show they can lead to significant reductions in rate standard deviations compared to correlation-agnostic solutions (up to 33% and 12% improvements at the 50th and 99th percentiles respectively for 20 superflows based on real traffic traces).

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference41 articles.

1. M. Al-Fares , A. Loukissas , and A. Vahdat . A scalable, commodity data center network architecture. ACM SIGCOMM computer communication review, 38(4):63--74 , 2008 . M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture. ACM SIGCOMM computer communication review, 38(4):63--74, 2008.

2. M. Al-Fares , S. Radhakrishnan , B. Raghavan , N. Huang , A. Vahdat , Hedera: dynamic flow scheduling for data center networks . In Nsdi , volume 10 , pages 89 -- 92 . San Jose , USA , 2010 . M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat, et al. Hedera: dynamic flow scheduling for data center networks. In Nsdi, volume 10, pages 89--92. San Jose, USA, 2010.

3. CONGA

4. Pearson Correlation Coefficient

5. MicroTE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hierarchical Congestion Control (HCC): Fairness and Fast Convergence for Data Centers;2022 IFIP Networking Conference (IFIP Networking);2022-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3