OS Support for Adaptive Components in Self-aware Systems

Author:

Reis João Gabriel1,Fröhlich Antônio Augusto1

Affiliation:

1. Federal University of Santa Catarina, Florianópolis, Brazil

Abstract

The current pace of innovation in computing makes it difficult to assume a fixed set of requirements for the whole life span of a system. Aggressive technology scaling also imposes additional constraints to modern hardware platforms. An answer to this question are self-aware systems, which are capable of autonomously sensing and actuating upon themselves to cope with varying requirements. In this paper, we discuss the design and implementation of adaptive components in this scenario from the perspective of the OS. Components can exist in multiple avors that can by dynamically chosen according to current demands. The proposed framework supports this variability for components while preserving their interface contracts, even if avors exist in different domains (software, hardware, remote). The synthesis process delivers tailored wrapper for components according to their avors. Besides reconfiguration, we also support adaptations through dynamic power management and task remapping. The framework also supports component designers in terms of sensing via an event-based mechanism. The framework is validated through a case with three adaptive components in a telecommunication switch (AES, ADPCM, and DTMF) with little overhead both in terms of execution time and memory/silicon consumption.

Publisher

Association for Computing Machinery (ACM)

Reference32 articles.

1. Design and Implementation of an Object-Oriented Framework for Dynamic Partial Reconfiguration

2. PetaBricks

3. Green

4. Evaluation of silicon consumption for a connectionless network-on-chip;Berejuck M. D.;International Journal of Advanced Studies in Computer Science and Engineering,2014

5. Dynamically reconfigurable hardware/software mobile agents

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3