Exploring Machine Learning for Thread Characterization on Heterogeneous Multiprocessors

Author:

Li Cha V.1,Petrucci Vinicius2,Mossé Daniel1

Affiliation:

1. University of Pittsburgh

2. Federal University of Bahia

Abstract

We introduce a thread characterization method that explores hardware performance counters and machine learning techniques to automate estimating workload execution on heterogeneous processors. We show that our characterization scheme achieves higher accuracy when predicting performance indicators, such as instructions per cycle and last-level cache misses, commonly used to determine the mapping of threads to processor types at runtime. We also show that support vector regression achieves higher accuracy when compared to linear regression, and has very low (1%) overhead. The results presented in this paper can provide a foundation for advanced investigations and interesting new directions in intelligent thread scheduling and power management on multiprocessors.

Publisher

Association for Computing Machinery (ACM)

Reference31 articles.

1. Octave-forge - extra packages for gnu octave. Octave-forge - extra packages for gnu octave.

2. perfmon2: the hardware-based performance monitoring interface for linux. perfmon2: the hardware-based performance monitoring interface for linux.

3. Predicting the performance measures of an optical distributed shared memory multiprocessor by using support vector regression

4. ARM. big.LITTLE processing 2011. ARM. big.LITTLE processing 2011.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-driven modeling of reconfigurable multi-accelerator systems under dynamic workloads;Microprocessors and Microsystems;2024-06

2. An efficient machine learning based CPU scheduler for heterogeneous multicore processors;International Journal of Information Technology;2024-05-24

3. A Deep Learning Framework for Microarchitecture Independent Workload Characterization Technique for Multi-core Asymmetric Embedded Systems;SN Computer Science;2023-06-30

4. Evaluation of the Intel thread director technology on an Alder Lake processor;Proceedings of the 13th ACM SIGOPS Asia-Pacific Workshop on Systems;2022-08-23

5. LUSH: Lightweight Framework for User-level Scheduling in Heterogeneous Multicores;2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC);2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3