Early Detection of Social Media Hoaxes at Scale

Author:

Zubiaga Arkaitz1ORCID,Jiang Aiqi1ORCID

Affiliation:

1. Queen Mary University of London, London, United Kingdom

Abstract

The unmoderated nature of social media enables the diffusion of hoaxes, which in turn jeopardises the credibility of information gathered from social media platforms. Existing research on automated detection of hoaxes has the limitation of using relatively small datasets, owing to the difficulty of getting labelled data. This, in turn, has limited research exploring early detection of hoaxes as well as exploring other factors such as the effect of the size of the training data or the use of sliding windows. To mitigate this problem, we introduce a semi-automated method that leverages the Wikidata knowledge base to build large-scale datasets for veracity classification, focusing on celebrity death reports. This enables us to create a dataset with 4,007 reports including over 13M tweets, 15% of which are fake. Experiments using class-specific representations of word embeddings show that we can achieve F1 scores nearing 72% within 10 minutes of the first tweet being posted when we expand the size of the training data following our semi-automated means. Our dataset represents a realistic scenario with a real distribution of true, commemorative, and false stories, which we release for further use as a benchmark in future research.

Funder

QMUL Research-IT

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference67 articles.

1. Detecting breaking news rumors of emerging topics in social media

2. A neural probabilistic language model;Bengio Yoshua;J. Mach. Learn. Res. 3,2003

3. Blogs, Twitter, and breaking news: The produsage of citizen journalism;Bruns Axel;Produs. Theor. Dig. World: Intersect. Aud. Prod. Contemp. Theor.,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3