Psychophysiological Modeling of Trust In Technology

Author:

Ajenaghughrure Ighoyota Ben1,Sousa Sonia Cláudia Da Costa1,Lamas David1

Affiliation:

1. Tallinn University, Tallinn, Estonia

Abstract

Trust as a precursor for users' acceptance of artificial intelligence (AI) technologies that operate as a conceptual extension of humans (e.g., autonomous vehicles (AVs)) is highly influenced by users' risk perception amongst other factors. Prior studies that investigated the interplay between risk and trust perception recommended the development of real-time tools for monitoring cognitive states (e.g., trust). The primary objective of this study was to investigate a feature selection method that yields feature sets that can help develop a highly optimized and stable ensemble trust classifier model. The secondary objective of this study was to investigate how varying levels of risk perception influence users' trust and overall reliance on technology. A within-subject four-condition experiment was implemented with an AV driving game. This experiment involved 25 participants, and their electroencephalogram, electrodermal activity, and facial electromyogram psychophysiological signals were acquired. We applied wrapper, filter, and hybrid feature selection methods on the 82 features extracted from the psychophysiological signals. We trained and tested five voting-based ensemble trust classifier models using training and testing datasets containing only the features identified by the feature selection methods. The results indicate the superiority of the hybrid feature selection method over other methods in terms of model performance. In addition, the self-reported trust measurement and overall reliance of participants on the technology (AV) measured with joystick movements throughout the game reveals that a reduction in risk results in an increase in trust and overall reliance on technology.

Funder

Tallinn University research fund project

Estonia Research Council grant

European Union Horizon 2020 research and innovation program under the NGITRUST grant agreement

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Human-Computer Interaction,Social Sciences (miscellaneous)

Reference86 articles.

1. [n.d.]. 2019 CIGI-Ipsos Global Survey on Internet Security and Trust. http://www.cigionline.org/internet-survey-2019 [n.d.]. 2019 CIGI-Ipsos Global Survey on Internet Security and Trust. http://www.cigionline.org/internet-survey-2019

2. A topology of shared control systems-finding common ground in diversity;Abbink David A;IEEE Transactions on Human-Machine Systems,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3