Programming wireless sensor networks

Author:

Mottola Luca1,Picco Gian Pietro2

Affiliation:

1. University of Trento and Swedish Institute of Computer Science

2. University of Trento

Abstract

Wireless sensor networks (WSNs) are attracting great interest in a number of application domains concerned with monitoring and control of physical phenomena, as they enable dense and untethered deployments at low cost and with unprecedented flexibility. However, application development is still one of the main hurdles to a wide adoption of WSN technology. In current real-world WSN deployments, programming is typically carried out very close to the operating system, therefore requiring the programmer to focus on low-level system issues. This not only distracts the programmer from the application logic, but also requires a technical background rarely found among application domain experts. The need for appropriate high-level programming abstractions, capable of simplifying the programming chore without sacrificing efficiency, has long been recognized, and several solutions have hitherto been proposed, which differ along many dimensions. In this article, we survey the state of the art in programming approaches for WSNs. We begin by presenting a taxonomy of WSN applications, to identify the fundamental requirements programming platforms must deal with. Then, we introduce a taxonomy of WSN programming approaches that captures the fundamental differences among existing solutions, and constitutes the core contribution of this article. Our presentation style relies on concrete examples and code snippets taken from programming platforms representative of the taxonomy dimensions being discussed. We use the taxonomy to provide an exhaustive classification of existing approaches. Moreover, we also map existing approaches back to the application requirements, therefore providing not only a complete view of the state of the art, but also useful insights for selecting the programming abstraction most appropriate to the application at hand.

Funder

Seventh Framework Programme

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference143 articles.

1. MANTIS

2. Aduino Sensor Node Platform. www.arduino.cc. Aduino Sensor Node Platform. www.arduino.cc.

3. A survey on sensor networks

4. Wireless sensor and actor networks: research challenges

Cited by 200 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The eXchange Calculus (XC): A functional programming language design for distributed collective systems;Journal of Systems and Software;2024-04

2. Self-Organisation Programming: A Functional Reactive Macro Approach;2023 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS);2023-09-25

3. Macroprogramming: Concepts, State of the Art, and Opportunities of Macroscopic Behaviour Modelling;ACM Computing Surveys;2023-07-13

4. On the use of RFID Middleware for real-time data stream processing;Proceedings of the 6th International Conference on Networking, Intelligent Systems & Security;2023-05-24

5. Wireless Sensor Networks Face Challenges and Issues Related to Security;2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2023-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3