Controlling Media Player with Hands: A Transformer Approach and a Quality of Experience Assessment

Author:

Floris Alessandro1ORCID,Porcu Simone1ORCID,Atzori Luigi1ORCID

Affiliation:

1. DIEE, University of Cagliari, Italy and CNIT, University of Cagliari, Italy

Abstract

In this article, we propose a Hand Gesture Recognition (HGR) system based on a novel deep transformer (DT) neural network for media player control. The extracted hand skeleton features are processed by separate transformers for each finger in isolation to better identify the finger characteristics to drive the following classification. The achieved HGR accuracy (0.853) outperforms state-of-the-art HGR approaches when tested on the popular NVIDIA dataset. Moreover, we conducted a subjective assessment involving 30 people to evaluate the Quality of Experience (QoE) provided by the proposed DT-HGR for controlling a media player application compared with two traditional input devices, i.e., mouse and keyboard. The assessment participants were asked to evaluate objective (accuracy) and subjective (physical fatigue, usability, pragmatic quality, and hedonic quality) measurements. We found that (i) the accuracy of DT-HGR is very high (91.67%), only slightly lower than that of traditional alternative interaction modalities; and that (ii) the perceived quality for DT-HGR in terms of satisfaction, comfort, and interactivity is very high, with an average Mean Opinion Score (MOS) value as high as 4.4, whereas the alternative approaches did not reach 3.8, which encourages a more pervasive adoption of the natural gesture interaction.

Funder

European Union under the Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU

Sustainable Mobility Center

Dottorati e contratti di ricerca su tematiche dell’innovazione

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3