Guava

Author:

Bacon David F.1,Strom Robert E.1,Tarafdar Ashis2

Affiliation:

1. IBM Watson Research Center, P.O. Box 704, Yorktown Heights, NY

2. Dept. of Computer Sciences, University of Texas at Austin, Austin, Texas

Abstract

We introduce Guava, a dialect of Java whose rules statically guarantee that parallel threads access shared data only through synchronized methods. Our dialect distinguishes three categories of classes: (1) monitors, which may be referenced from multiple threads, but whose methods are accessed serially; (2) values, which cannot be referenced and therefore are never shared; and (3) objects, which can have multiple references but only from within one thread, and therefore do not need to be synchronized. Guava circumvents the problems associated with today's Java memory model, which must define behavior when concurrent threads access shared memory without synchronization.We present an overview of the syntax and the semantic rules of Guava. We discuss how implementations of Guava can exploit these rules to re-enable compiler optimizations inhibited by standard Java. We discuss how compilers for certain multiprocessor architectures can automatically generate certain programming idioms, such as double-check reads, as optimizations of serialized monitors.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SSRD: Shapes and Summaries for Race Detection in Concurrent Data Structures;Proceedings of the 2024 ACM SIGPLAN International Symposium on Memory Management;2024-06-20

2. When Is Parallelism Fearless and Zero-Cost with Rust?;Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures;2024-06-17

3. Safe mutation with algebraic effects;Proceedings of the 14th ACM SIGPLAN International Symposium on Haskell;2021-08-18

4. Revisiting monitors;Science of Computer Programming;2020-09

5. Revisiting monitors;Proceedings of the XXII Brazilian Symposium on Programming Languages - SBLP '18;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3