Compressed text indexes

Author:

Ferragina Paolo1,González Rodrigo2,Navarro Gonzalo2,Venturini Rossano1

Affiliation:

1. University of Pisa

2. University of Chile

Abstract

A compressed full-text self-index represents a text in a compressed form and still answers queries efficiently. This represents a significant advancement over the (full-)text indexing techniques of the previous decade, whose indexes required several times the size of the text. Although it is relatively new, this algorithmic technology has matured up to a point where theoretical research is giving way to practical developments. Nonetheless this requires significant programming skills, a deep engineering effort, and a strong algorithmic background to dig into the research results. To date only isolated implementations and focused comparisons of compressed indexes have been reported, and they missed a common API, which prevented their re-use or deployment within other applications. The goal of this article is to fill this gap. First, we present the existing implementations of compressed indexes from a practitioner's point of view. Second, we introduce the Pizza&Chili site, which offers tuned implementations and a standardized API for the most successful compressed full-text self-indexes, together with effective test-beds and scripts for their automatic validation and test. Third, we show the results of our extensive experiments on these codes with the aim of demonstrating the practical relevance of this novel algorithmic technology.

Funder

Millennium Nucleus Center for Web Research

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Reference62 articles.

1. Aluru S. and Ko P. 2008. Encyclopedia of Algorithms. Springer Chapter on “Lookup Tables Suffix Trees and Suffix Arrays”. Aluru S. and Ko P. 2008. Encyclopedia of Algorithms. Springer Chapter on “Lookup Tables Suffix Trees and Suffix Arrays”.

2. Efficient implementation of suffix trees

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3