Raced profiles

Author:

Leather Hugh1,O'Boyle Michael1,Worton Bruce1

Affiliation:

1. University of Edinburgh, Edinburgh, United Kingdom

Abstract

Many problems in embedded compilation require one set of optimizations to be selected over another based on run time performance. Self-tuned libraries, iterative compilation and machine learning techniques all compare multiple compiled program versions. In each, program versions are timed to determine which has the best performance. The program needs to be run multiple times for each version because there is noise inherent in most performance measurements. The number of runs must be enough to compare different versions, despite the noise, but executing more than this will waste time and energy. The compiler writer must either risk taking too few runs, potentially getting incorrect results, or taking too many runs increasing the time for their experiments or reducing the number of program versions evaluated. Prior works choose constant size sampling plans where each compiled version is executed a fixed number of times without regard to the level of noise. In this paper we develop a sequential sampling plan which can automatically adapt to the experiment so that the compiler writer can have both confidence in the results and also be sure that no more runs were taken than were needed. We show that our system is able to correctly determine the best optimization settings with between 76% and 87% fewer runs than needed by a brute force, constant sampling size approach. We also compare our approach to JavaSTATS(10); we needed 77% to 89% fewer runs than it needed.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approximating Pareto optimal compiler optimization sequences-a trade-off between WCET, ACET and code size;Software: Practice and Experience;2011-05-23

2. WCC—WCET-Aware C Compiler;Worst-Case Execution Time Aware Compilation Techniques for Real-Time Systems;2011

3. Introduction;Worst-Case Execution Time Aware Compilation Techniques for Real-Time Systems;2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3