Making Data Work Count

Author:

Chandhiramowuli Srravya1ORCID,Taylor Alex S.1ORCID,Heitlinger Sara2ORCID,Wang Ding3ORCID

Affiliation:

1. University of Edinburgh, Edinburgh, United Kingdom

2. City, University of London, London, United Kingdom

3. Google Research, Atlanta, GA, USA

Abstract

In this paper, we examine the work of data annotation. Specifically, we focus on the role of counting or quantification in organising annotation work. Based on an ethnographic study of data annotation in two outsourcing centres in India, we observe that counting practices and its associated logics are an integral part of day-to-day annotation activities. In particular, we call attention to the presumption of total countability observed in annotation - the notion that everything, from tasks, datasets and deliverables, to workers, work time, quality and performance, can be managed by applying the logics of counting. To examine this, we draw on sociological and socio-technical scholarship on quantification and develop the lens of a 'regime of counting' that makes explicit the specific counts, practices, actors and structures that underpin the pervasive counting in annotation. We find that within the AI supply chain and data work, counting regimes aid the assertion of authority by the AI clients (also called requesters) over annotation processes, constituting them as reductive, standardised, and homogenous. We illustrate how this has implications for i) how annotation work and workers get valued, ii) the role human discretion plays in annotation, and iii) broader efforts to introduce accountable and more just practices in AI. Through these implications, we illustrate the limits of operating within the logic of total countability. Instead, we argue for a view of counting as partial - located in distinct geographies, shaped by specific interests and accountable in only limited ways. This, we propose, sets the stage for a fundamentally different orientation to counting and what counts in data annotation.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3