A study of single-chip processor/cache organizations for large numbers of transistors

Author:

Farrens M.1,Tyson G.1,Pleszkun A. R.2

Affiliation:

1. Computer Science Department, University of Califonia, Davis, Davis, CA

2. Department of Electrical and Computer Engineering, University of Colorado-Boulder, Boulder, CO

Abstract

This paper presents a trace-driven simulation-based study of a wide range of cache configurations and processor counts. This study was undertaken in an attempt to help answer the question of how best to allocate large numbers of transistors, a question that is rapidly increasing in importance as transistor densities continue to climb. At what point does continuing to increase the size of the on-chip first level cache cease to provide sufficient increases in hit rate and become prohibitively difficult to access in a single cycle? In order to compare different configurations, the concept of an Equivalent Cache Transistor is presented. Results indicate that the access time of the first-level data cache is more important than the size. In addition, it appears that once approximately 15 million transistors become available, a two processor configuration is preferable to a single processor with correspondingly larger caches.

Publisher

Association for Computing Machinery (ACM)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3