Affiliation:
1. NOVA-LINCS and NOVA School of Science and Technology, Portugal
2. Imperial College London, United Kingdom
Abstract
This work exploits the logical foundation of session types to determine what kind of type discipline for the Λ-calculus can exactly capture, and is captured by, Λ-calculus behaviours. Leveraging the proof theoretic content of the soundness and completeness of sequent calculus and natural deduction presentations of linear logic, we develop the first
mutually inverse
and
fully abstract
processes-as-functions and functions-as-processes encodings between a polymorphic session π-calculus and a linear formulation of System F. We are then able to derive results of the session calculus from the theory of the Λ-calculus: (1) we obtain a characterisation of inductive and coinductive session types via their algebraic representations in System F; and (2) we extend our results to account for
value
and
process
passing, entailing strong normalisation.
Publisher
Association for Computing Machinery (ACM)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献