Cost-effective, Energy-efficient, and Scalable Storage Computing for Large-scale AI Applications

Author:

Do Jaeyoung1,Ferreira Victor C.2,Bobarshad Hossein3ORCID,Torabzadehkashi Mahdi3ORCID,Rezaei Siavash4,Heydarigorji Ali4ORCID,Souza Diego5,Goldstein Brunno F.2,Santiago Leandro2,Kim Min Soo4,Lima Priscila M. V.2,França Felipe M. G.2,Alves Vladimir3

Affiliation:

1. Microsoft Research, USA

2. Federal University of Rio de Janeiro, Brazil

3. NGD Systems, USA

4. University of California, Irvine, USA

5. Wespa Intelligent Systems

Abstract

The growing volume of data produced continuously in the Cloud and at the Edge poses significant challenges for large-scale AI applications to extract and learn useful information from the data in a timely and efficient way. The goal of this article is to explore the use of computational storage to address such challenges by distributed near-data processing. We describe Newport, a high-performance and energy-efficient computational storage developed for realizing the full potential of in-storage processing. To the best of our knowledge, Newport is the first commodity SSD that can be configured to run a server-like operating system, greatly minimizing the effort for creating and maintaining applications running inside the storage. We analyze the benefits of using Newport by running complex AI applications such as image similarity search and object tracking on a large visual dataset. The results demonstrate that data-intensive AI workloads can be efficiently parallelized and offloaded, even to a small set of Newport drives with significant performance gains and energy savings. In addition, we introduce a comprehensive taxonomy of existing computational storage solutions together with a realistic cost analysis for high-volume production, giving a good big picture of the economic feasibility of the computational storage technology.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3