Correlation Discrepancy Insight Network for Video Re-identification

Author:

Ruan Weijian1,Liang Chao1ORCID,Yu Yi2ORCID,Wang Zheng2,Liu Wu3,Chen Jun1,Ma Jiayi4

Affiliation:

1. NERCMS, School of Computer, Wuhan University, China

2. National Institute of Informatics, Japan

3. JD AI Research, China

4. Electronic Information School, Wuhan University, China

Abstract

Video-based person re-identification (ReID) aims at re-identifying a specified person sequence from videos that were captured by disjoint cameras. Most existing works on this task ignore the quality discrepancy across frames by using all video frames to develop a ReID method. Additionally, they adopt only the person self-characteristic as the representation, which cannot adapt to cross-camera variation effectively. To that end, we propose a novel correlation discrepancy insight network for video-based person ReID, which consists of an unsupervised correlation insight model (CIM) for video purification and a discrepancy description network (DDN) for person representation. Concretely, CIM is constructed by using kernelized correlation filters to encode person half-parts, which evaluates the frame quality by the cross correlation across frames for selecting discriminative video fragments. Furthermore, DDN exploits the selected video fragments to generate a discrepancy descriptor using a compression network, which aims at employing the discrepancies with other persons’ to facilitate the representation of the target person rather than only using the self-characteristic. Due to the advantage in handling cross-domain variation, the discrepancy descriptor is expected to provide a new pattern for the object representation in cross-camera tasks. Experimental results on three public benchmarks demonstrate that the proposed method outperforms several state-of-the-art methods.

Funder

National Key R&D Program of China

National Nature Science Foundation of China

Natural Science Fundation of Hubei Province

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3