From Rocks to Pebbles

Author:

Brown Philip E.1,Dasu Tamraparni1,Kanza Yaron1,Srivastava Divesh1

Affiliation:

1. AT8T Labs-Research, Bedminster, NJ, USA

Abstract

Spatiotemporal streams are prone to data quality issues such as missing, duplicated and delayed data—when data generating sensors malfunction, data transmissions experience problems, or when data are stored or processed improperly. However, many important real-time applications rely on the continuous availability of stream values, e.g., to monitor traffic flow, resource usage, weather phenomena, and so on. Other non real-time applications that support continuous or offline historical analytics also require high quality data to avoid producing misleading output such as false positives, erroneous conclusions, and decisions. In this article, we study the problem of smoothing streams produced by an overlay of sensors. We present nonparametric (data-driven, distribution free) statistical methods to provide an uninterrupted stream of high-quality spatiotemporal data to real-time applications, even when the raw stream suffers data quality issues, such as noise or missing values. Our novel family of robust methods computes smoothed values (SVs) that could be used as proxies for data of questionable quality. The methods make use of a partition of the monitored area into cells to compute SVs based on historical data and the deviation from normalcy in neighboring spatial cells in a way that outperforms standard regression or interpolation. Our methods use incremental computation for efficiency, and they differ in how the deviations are normalized, e.g., with respect to zeroth-order, first-order, and second-order moments. We use three real data sets to run a suite of experiments and empirically demonstrate the superiority of the method that uses normalization with respect to variability.

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Planning Wireless Backhaul Links by Testing Line of Sight and Fresnel Zone Clearance;ACM Transactions on Spatial Algorithms and Systems;2023-01-12

2. A fault-tolerant clustering algorithm for processing data from multiple streams;Information Sciences;2022-01

3. Tracking Stream Quality Issues in Combined Physical and Radar Sensors for IoT-based Data-driven Actuation;2021 CIE International Conference on Radar (Radar);2021-12-15

4. Spatial Interpolation Techniques on Participatory Sensing Data;ACM Transactions on Spatial Algorithms and Systems;2021-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3