MizBERT: A Mizo BERT Model

Author:

Lalramhluna Robert1ORCID,Dash Sandeep1ORCID,Pakray Dr.Partha2ORCID

Affiliation:

1. Computer Science & Engineering, National Institute of Technology, Mizoram, Aizawl, India

2. Computer Science & Engineering, National Institute of Technology, Silchar, Silchar, India

Abstract

This research investigates the utilization of pre-trained BERT transformers within the context of the Mizo language. BERT, an abbreviation for Bidirectional Encoder Representations from Transformers, symbolizes Google’s forefront neural network approach to Natural Language Processing (NLP), renowned for its remarkable performance across various NLP tasks. However, its efficacy in handling low-resource languages such as Mizo remains largely unexplored. In this study, we introduce MizBERT , a specialized Mizo language model. Through extensive pre-training on a corpus collected from diverse online platforms, MizBERT has been tailored to accommodate the nuances of the Mizo language. Evaluation of MizBERT’s capabilities is conducted using two primary metrics: masked language modeling and perplexity, yielding scores of 76.12% and 3.2565, respectively. Additionally, its performance in a text classification task is examined. Results indicate that MizBERT outperforms both the Multilingual BERT model and the Support Vector Machine algorithm, achieving an accuracy of 98.92%. This underscores MizBERT’s proficiency in understanding and processing the intricacies inherent in the Mizo language.

Publisher

Association for Computing Machinery (ACM)

Reference28 articles.

1. AraBERT: Transformer-based model for arabic language understanding;Antoun Wissam;arXiv preprint arXiv:2003.00104,2020

2. Andrew Bawitlung, Sandeep Kumar Dash, Robert Lalramhluna, and Alexander Gelbukh. 2024. An approach to Mizo language news classification using machine learning. In Data Science and Network Engineering, Suyel Namasudra, Munesh Chandra Trivedi, Ruben Gonzalez Crespo, and Pascal Lorenz (Eds.). Springer Nature Singapore, Singapore, 165–180.

3. Jereemi Bentham, Partha Pakray, Goutam Majumder, Sunday Lalbiaknia, and Alexander Gelbukh. 2016. Identification of rules for recognition of named entity classes in Mizo language. In Proceedings of the 2016 15th Mexican International Conference on Artificial Intelligence (MICAI’16). IEEE, 8–13.

4. Tom B. Brown Benjamin Mann Nick Ryder Melanie Subbiah Jared Kaplan Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray Benjamin Chess Jack Clark Christopher Berner Sam McCandlish Alec Radford Ilya Sutskever and Dario Amodei. 2020. Language models are few-shot learners. arxiv:2005.14165 [cs.CL] (2020).

5. German’s Next Language Model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3