1. Marc Abeille and Alessandro Lazaric. 2017. Linear thompson sampling revisited. In Artificial Intelligence and Statistics. PMLR 176–184. https://doi.org/10.48550/arXiv.1611.06534 Marc Abeille and Alessandro Lazaric. 2017. Linear thompson sampling revisited. In Artificial Intelligence and Statistics. PMLR 176–184. https://doi.org/10.48550/arXiv.1611.06534
2. Gediminas Adomavicius and Alexander Tuzhilin . 2005. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions . IEEE transactions on knowledge and data engineering 17, 6( 2005 ), 734–749. https://doi.org/10.1007/978-1-4899-7637-11 Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering 17, 6(2005), 734–749. https://doi.org/10.1007/978-1-4899-7637-11
3. Xavier Amatriain and Justin Basilico . 2015. Recommender systems in industry: A netflix case study . In Recommender systems handbook . Springer , 385–419. Xavier Amatriain and Justin Basilico. 2015. Recommender systems in industry: A netflix case study. In Recommender systems handbook. Springer, 385–419.
4. Past, Present, and Future of Recommender Systems
5. Vito Walter Anelli , Tommaso Di Noia , Eugenio Di Sciascio , Azzurra Ragone , and Joseph Trotta . 2019 . Local popularity and time in top-n recommendation . In European Conference on Information Retrieval. Springer, 861–868 . https://doi.org/10.1007/978-3-030-15712-8_63 Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Azzurra Ragone, and Joseph Trotta. 2019. Local popularity and time in top-n recommendation. In European Conference on Information Retrieval. Springer, 861–868. https://doi.org/10.1007/978-3-030-15712-8_63