Interactive POI Recommendation: applying a Multi-Armed Bandit framework to characterise and create new models for this scenario

Author:

Silva Thiago1,Silva Nicollas2,Mito Carlos1,Pereira Adriano C. M.3,Rocha Leonardo1

Affiliation:

1. Universidade Federal de São João del-Rei, Brasil

2. Universidade Federal de Minas Gerais, Portugal

3. Universidade Federal de Minas Gerais, Brasil

Publisher

ACM

Reference56 articles.

1. Marc Abeille and Alessandro Lazaric. 2017. Linear thompson sampling revisited. In Artificial Intelligence and Statistics. PMLR 176–184. https://doi.org/10.48550/arXiv.1611.06534 Marc Abeille and Alessandro Lazaric. 2017. Linear thompson sampling revisited. In Artificial Intelligence and Statistics. PMLR 176–184. https://doi.org/10.48550/arXiv.1611.06534

2. Gediminas Adomavicius and Alexander Tuzhilin . 2005. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions . IEEE transactions on knowledge and data engineering 17, 6( 2005 ), 734–749. https://doi.org/10.1007/978-1-4899-7637-11 Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering 17, 6(2005), 734–749. https://doi.org/10.1007/978-1-4899-7637-11

3. Xavier Amatriain and Justin Basilico . 2015. Recommender systems in industry: A netflix case study . In Recommender systems handbook . Springer , 385–419. Xavier Amatriain and Justin Basilico. 2015. Recommender systems in industry: A netflix case study. In Recommender systems handbook. Springer, 385–419.

4. Past, Present, and Future of Recommender Systems

5. Vito Walter Anelli , Tommaso Di Noia , Eugenio Di Sciascio , Azzurra Ragone , and Joseph Trotta . 2019 . Local popularity and time in top-n recommendation . In European Conference on Information Retrieval. Springer, 861–868 . https://doi.org/10.1007/978-3-030-15712-8_63 Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Azzurra Ragone, and Joseph Trotta. 2019. Local popularity and time in top-n recommendation. In European Conference on Information Retrieval. Springer, 861–868. https://doi.org/10.1007/978-3-030-15712-8_63

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Complete Framework for Offline and Counterfactual Evaluations of Interactive Recommendation Systems;Proceedings of the 29th Brazilian Symposium on Multimedia and the Web;2023-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3