Interactive three-dimensional holographic displays

Author:

Lucente Mark1

Affiliation:

1. IBM T.J. Watson Research Center, Yorktown Heights, NY

Abstract

Computer graphics is confined chiefly to flat images. Images may look three-dimensional (3D), and sometimes create the illusion of 3D when displayed, for example, on a stereoscopic display [16, 13, 12]. Nevertheless, when viewing an image on most display systems, the human visual system (HVS) sees a flat plane of pixels. Volumetric displays can create a 3D computer graphics image, but fail to provide many visual depth cues (e.g. shading texture gradients) and cannot provide the powerful depth cue of overlap (occlusion). Discrete parallax displays (such as lenticular displays) promise to create 3D images with all of the depth cues, but are limited by achievable resolution. Only a real-time electronic holographic ("holovideo") display [11, 6, 8, 7, 9, 21, 22, 20, 2] can create a truly 3D computer graphics image with all of the depth cues (motion parallax, ocular accommodation, occlusion, etc.) and resolution sufficient to provide extreme realism [13]. Holovideo displays promise to enhance numerous applications in the creation and manipulation of information, including telepresence, education, medical imaging, interactive design and scientific visualization.The technology of electronic interactive three-dimensional holographic displays is in its first decade. Though fancied in popular science fiction, only recently have researchers created the first real holovideo systems by confronting the two basic requirements of electronic holography: computational speed and high-bandwidth modulation of visible light. This article describes the approaches used to address these problems, as well as emerging technologies and techniques that provide firm footing for the development of practical holovideo.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,General Computer Science

Reference25 articles.

1. Coherent optical correlator using a deformable mirror device spatial light modulator in the Fourier plane;Gale;Applied Optics,2091

2. Real‐time hologram construction and reconstruction using a high‐resolution spatial light modulator

3. Real-time electroholographic system using liquid crystal television spatial light modulators

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiplane Holographic Imaging Using the Spatial Light Modulator;Photonics;2023-08-27

2. Realistic Defocus Blur for Multiplane Computer-Generated Holography;2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR);2023-03

3. Introduction;Series in Display Science and Technology;2023

4. HORN-9: Special-purpose computer for electroholography with the Hilbert transform;Optics Express;2022-09-29

5. Immersive visual technologies and human health;European Conference on Cognitive Ergonomics 2021;2021-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3